ALTERNATION HISTORY RECORDS 变更记录

Date 日期	Version 版本	Mark 标记	Page 页码	Description 描述	<i>Drafter</i> 制定者	Approver 审批者
2020-12-10	А	/	7	首次发行	常斯琴	/

Part Numbering System :

ATS	<u>03</u>	<u>J</u>	<u>A</u>	<u>10K</u>
Series Name Chip Resistor: ATS: Surge Automotive	TypeInch (mm) 03-0603(1608) 05-0805(2012)	Tolerance F= ± 1.0% J= ± 5.0% P=Jumper	Package A=4Kpcs/7"Reel B=5Kpcs/7"Reel C=10Kpcs/7"Reel	Resistance 1R2=1.2 Ω 10K=10K Ω 10K5=10.5KΩ

FEATURE

- 1. Power rating and compact size
- 2. High reliability and stability
- 3. Reduced size of final equipment
- 4. High anti-surge protection
- 5. Halogen free
- 6. Automotive high grade AEC Q-200 qualified
- 7. Anti-sulfuration against ASTM B-809 60'C, 95% RH, 1000hrs

APPLICATION

- Power supply
- Measurement instrument
- Automotive industry
- Medical or Military equipment

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to request resistance to nominal value within tolerance which controlled by printing process in this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (Pb free) alloy.

Fig 1. Construction of Chip-R ATSXX

QUICK REFERENCE DATA

Item	General Specification	General Specification
Series No.	ATS03	ATS05
Size code	0603 (1608)	0805 (2012)
Resistance Tolerance	±0.5% ±1%, (E24+E96)	±0.5% ±1%, (E24+E96)
	±5%, (E24)	±5%, (E24)
Resistance Range	1Ω ~ 1MΩ	1Ω ~ 1MΩ
TCR (ppm/°C)		
10Ω ~ 1ΜΩ	± 100 ppm /°C	± 100 ppm /°C
1Ω ~ 9.76Ω	± 200 ppm /°C	\pm 200 ppm /°C
Max. dissipation at T _{amb} =70°C	1/4W	1/3W
Max. Operation Voltage	150V	200V
Max. Overload Voltage	300V	400V
Operation temperature	- 55 ~ +155'C	- 55 ~ +155'C

Note :

- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by

 $RCWV = \sqrt{Rated Power \times Resistance Value}$ or Max. RCWV listed above, whichever is lower.

MECHANICAL DATA(unit : mm)

Symbol ATS03		ATS05
L 1.60 ± 0.10		2.00 ± 0.10
W	0.80 +0.15/-0.05	1.25 ± 0.10
Т	0.45 ± 0.10	0.55 ± 0.10
Tt	0.25 ± 0.10	0.30 ± 0.20
Tb	0.30 ± 0.10	0.40 ± 0.20

MARKING

- 1. For 0805, each resistor is marked with 3 digits or 4 digits on the protective coating to designate the nominal resistance value. E24 series: 3 digits; E96 series: 4 digits. In case E96 overlaps with E24, 3 digits should be marked.
- 2. For 0603 E24, each resistor is marked with 3 digits. No marking for E96!
- 3. Example as below

Marking example	Contents		
123	12×10 ³ $[\Omega] \rightarrow$ 12 $[k\Omega]$		
2R2	2.2 [Ω]		
5623	$562 \times 10^{3} [\Omega] \rightarrow 562 [k\Omega]$		
12R7	12.7 [Ω]		

Single pulse limiting power chart

De-rating curve

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

As a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

Fig 3. Infrared soldering profile for Chip Resistors

TEST AND REQUIREMENTS(JIS C 5201-1 : 1998)

TEST	PROCEDURE	REQUIREMENT	
High temperature	155°C, no load, 1000hours	Δ R/R max. ±(1%+0.05 Ω)	
exposure MII -STD-202 method		no visible damage	
108			
Temperature cycling	30 minutes at -55°C±3°C, 2~3 minutes at 20°C+5°C-1°C, 30	no visible damage	
AEC Q200-4	minutes at +155°C±3°C, 2~3 minutes at 20°C+5°C-1°C, total 1000 cycles	Δ R/R max. ±(0.5%+0.05 Ω)	
Bias Humidity	1000 hours, at 10% rated continuous power in humidity	ΔR/R max. ±(1%+0.05Ω)	
MIL-STD-202 method 103	chamber controller at 85°C±2°C and 85% relative numbury,	no visible damage	
Operational Life	1000+48/-0 hours; 35% of operation power, 125±2°C	Δ R/R max. ±(1%+0.05 Ω)	
MIL-STD-202 method		no visible damage	
108			
Resistance to Solvent	Solvent: 2-propanol at 25 C Immersion time: 3 min	Δ R/R max. ±(0.5%+0.05 Ω)	
MIL-STD-202 method	Brush: 10 times brushing	no visible damage	
215	Immersion and brush cycle: 3cycle		
Mechanical Shock	Waveform: half sine, Peak value100G	Δ R/R max. ±(0.5%+0.05 Ω)	
MIL-STD-202 method	Normal duration 6ms	no visible damage	
213	Condition: XX'YY'ZZ', 10times each		
Vibration MII -STD-202 method	Peak acceleration and Sweep time: 5 g's for 20	Δ R/R max. ±(0.5%+0.05 Ω)	
204	Condition: 12 cycles each of 3 orientations	no visible damage	
Resistance to soldering	Un-mounted chips completely immersed for 10±1second in a	ΔR/R max. ±(0.5%+0.05Ω)	
heat (R.S.H) MIL-STD-	solder bath at 260°C ±5 °C	no visible damage	
202 method 210	Human bady madal 2 Kahm 150 nE		
ESD test	Human body model, $2 \text{ comm, 150 } \text{pr}$,	Δ R/R max. ±(1%+0.05 Ω)	
JIS-STD-002		no visible damage	
Solderability	a) Bake the sample for 155 °C dwell time 4hrs /	good tinning (>95% covered)	
JIS-STD-002	b) Solder dipping 215°C/ 5s. Solder: Sn63Pb37	no visible damage	
	c) Solder dipping 260°C/ 7s.		
Temperature Coefficient	Natural resistance change per change in degree centigrade.	Refer to "QUICK	
of Resistance(T.C.R)	$R_2 - R_1$	REFERENCE DATA"	
Clause 4.8	$\left \frac{2}{R_1(t_2 - t_1)} \times 10^{\circ} \text{ (ppm/°C)} \right t_1 : 20^{\circ} \text{C} + 5^{\circ} \text{C} - 1^{\circ} \text{C}$		
	R ₁ : Resistance at reference temperature		
	R ₂ : Resistance at test temperature +155'C		
Bending strength	Resistors mounted on a 90mm glass epoxy resin PCB(FR4);	ΔR/R max. ±(0.5%+0.05Ω)	
AEC Q200-005	bending : 2 mm, once for 60 seconds	no visible damage	
Adhesion	Pressurizing force: 10N for 0603; 17.7N for 0805,	ΔR/R max. ±(0.5%+0.05Ω)	
AEC Q200-006	Test time: 60±1sec.	No remarkable damage or removal of the terminations	
Sulfuration test	ASTM B-809-95	ΔR/R max. ±(1%+0.05Ω)	
ASTM B-809-95	Sulfur vapor	no visible damage	
	Relative humidity: 95%		
	Test period: 1000h		

PACKAGING

Tape specifications (unit :mm)

Series No.	А	В	W	F	E
ATS03	1.90±0.20	1.15±0.15	8.00±0.30	3.50±0.05	1.75±0.10
ATS05	2.50±0.20	1.65±0.15	8.00±0.30	3.50±0.05	1.75±0.10

Series No.	P1	P0	ΦD	Т
ATS03	4.00±0.10	4.00±0.10	$\Phi 1.50^{+0.1}_{-0.0}$	Max. 0.8
ATS05	4.00±0.10	4.00±0.10	Φ 1.50 ^{+0.1} _{-0.0}	Max. 1.0

Reel dimensions

Reel / Tape	A	В	С	D
7" reel for 8mm tape	Ф180.0+0/-1.5	Φ60.0+1/0	13.0±0.2	9+1.0/0

Taping quantity

- 0603/0805 Chip resistors 5,000 pcs paper tape per 7" reel.